23 research outputs found

    GridIMAGE: A Novel Use of Grid Computing to Support Interactive Human and Computer-Assisted Detection Decision Support

    Get PDF
    This paper describes a Grid-aware image reviewing system (GridIMAGE) that allows practitioners to (a) select images from multiple geographically distributed digital imaging and communication in medicine (DICOM) servers, (b) send those images to a specified group of human readers and computer-assisted detection (CAD) algorithms, and (c) obtain and compare interpretations from human readers and CAD algorithms. The currently implemented system was developed using the National Cancer Institute caGrid infrastructure and is designed to support the identification of lung nodules on thoracic computed tomography. However, the infrastructure is general and can support any type of distributed review. caGrid data and analytical services are used to link DICOM image databases and CAD systems and to interact with human readers. Moreover, the service-oriented and distributed structure of the GridIMAGE framework enables a flexible system, which can be deployed in an institution (linking multiple DICOM servers and CAD algorithms) and in a Grid environment (linking the resources of collaborating research groups). GridIMAGE provides a framework that allows practitioners to obtain interpretations from one or more human readers or CAD algorithms. It also provides a mechanism to allow cooperative imaging groups to systematically perform image interpretation tasks associated with research protocols

    e-Science and biological pathway semantics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science.</p> <p>Results</p> <p>We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs.</p> <p>Conclusion</p> <p>Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.</p

    Finding useful data across multiple biomedical data repositories using DataMed

    No full text
    The value of broadening searches for data across multiple repositories has been identified by the biomedical research community. As part of the NIH Big Data to Knowledge initiative, we work with an international community of researchers, service providers and knowledge experts to develop and test a data index and search engine, which are based on metadata extracted from various datasets in a range of repositories. DataMed is designed to be, for data, what PubMed has been for the scientific literature. DataMed supports Findability and Accessibility of datasets. These characteristics - along with Interoperability and Reusability - compose the four FAIR principles to facilitate knowledge discovery in today’s big data-intensive science landscape

    VirtualPACS—A Federating Gateway to Access Remote Image Data Resources over the Grid

    No full text
    Collaborations in biomedical research and clinical studies require that data, software, and computational resources be shared between geographically distant institutions. In radiology, there is a related issue of sharing remote DICOM data over the Internet. This paper focuses on the problem of federating multiple image data resources such that clients can interact with them as if they are stored in a centralized PACS. We present a toolkit, called VirtualPACS, to support this functionality. Using the toolkit, users can perform standard DICOM operations (query, retrieve, and submit) across distributed image databases. The key features of the toolkit are: (1) VirtualPACS makes it easy to use existing DICOM client applications for data access; (2) it can easily be incorporated into an imaging workflow as a DICOM source; (3) using VirtualPACS, heterogeneous collections of DICOM sources are exposed to clients through a uniform interface and common data model; and (4) DICOM image databases without DICOM messaging can be accessed

    DATS: the data tag suite to enable discoverability of datasets

    No full text
    Today’s science increasingly requires effective ways to find and access existing datasets that are distributed across a range of repositories. For researchers in the life sciences, discoverability of datasets may soon become as essential as identifying the latest publications via PubMed. Through an international collaborative effort funded by the National Institutes of Health (NIH)’s Big Data to Knowledge (BD2K) initiative, we have designed and implemented the DAta Tag Suite (DATS) model to support the DataMed data discovery index. DataMed’s goal is to be for data what PubMed has been for the scientific literature. Akin to the Journal Article Tag Suite (JATS) used in PubMed, the DATS model enables submission of metadata on datasets to DataMed. DATS has a core set of elements, which are generic and applicable to any type of datasets, and an extended set that can accommodate more specialized data types. DATS is a platform-independent model also available as a Schema.org annotated serialization to be used beyond DataMed, for example, in projects like DataCite

    DATS: the data tag suite to enable discoverability of datasets

    Get PDF
    Today’s science increasingly requires effective ways to find and access existing datasets that are distributed across a range of repositories. For researchers in the life sciences, discoverability of datasets may soon become as essential as identifying the latest publications via PubMed. Through an international collaborative effort funded by the National Institutes of Health (NIH)’s Big Data to Knowledge (BD2K) initiative, we have designed and implemented the DAta Tag Suite (DATS) model to support the DataMed data discovery index. DataMed’s goal is to be for data what PubMed has been for the scientific literature. Akin to the Journal Article Tag Suite (JATS) used in PubMed, the DATS model enables submission of metadata on datasets to DataMed. DATS has a core set of elements, which are generic and applicable to any type of datasets, and an extended set that can accommodate more specialized data types. DATS is a platform-independent model also available as a Schema.org annotated serialization to be used beyond DataMed, for example, in projects like DataCite

    DataMed - an open source discovery index for finding biomedical datasets

    No full text
    Objective: Finding relevant datasets is important for promoting data reuse in the biomedical domain, but it is challenging given the volume and complexity of biomedical data. Here we describe the development of an open source biomedical data discovery system called DataMed, with the goal of promoting the building of additional data indexes in the biomedical domain. Materials and Methods: DataMed, which can efficiently index and search diverse types of biomedical datasets across repositories, is developed through the National Institutes of Health–funded biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium. It consists of 2 main components: (1) a data ingestion pipeline that collects and transforms original metadata information to a unified metadata model, called DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries. In addition to describing its architecture and techniques, we evaluated individual components within DataMed, including the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the overall performance of the dataset retrieval engine. Results and Conclusion: Our manual review shows that the ingestion pipeline could achieve an accuracy of 90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10 (P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural language processing and terminology services. Currently, we have made the DataMed system publically available as an open source package for the biomedical community.</p

    DataMed - an open source discovery index for finding biomedical datasets

    No full text
    ObjectiveFinding relevant datasets is important for promoting data reuse in the biomedical domain, but it is challenging given the volume and complexity of biomedical data. Here we describe the development of an open source biomedical data discovery system called DataMed, with the goal of promoting the building of additional data indexes in the biomedical domain.Materials and methodsDataMed, which can efficiently index and search diverse types of biomedical datasets across repositories, is developed through the National Institutes of Health-funded biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium. It consists of 2 main components: (1) a data ingestion pipeline that collects and transforms original metadata information to a unified metadata model, called DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries. In addition to describing its architecture and techniques, we evaluated individual components within DataMed, including the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the overall performance of the dataset retrieval engine.Results and conclusionOur manual review shows that the ingestion pipeline could achieve an accuracy of 90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10 (P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural language processing and terminology services. Currently, we have made the DataMed system publically available as an open source package for the biomedical community
    corecore